
30 CROSSTALK The Journal of Defense Software Engineering February 2002

Departments

LETTERS TO THE EDITOR

Having read the November 2001 issue of CrossTalk,
I am somewhat at a loss concerning the section “Dynamic
vs. Static Invocation” in the article Factors to Consider When
Selecting CORBA Implementations by Dr. Thomas J. Croak.
The author must have misunderstood the meaning of static
invocation or he is using the term in a (for me) unknown
way.

The author states that “static invocation can be used if
the language, compiler, and operating system (and hard-
ware) are known to be the same on both client and server.”
This statement is of course true, but certainly static invoca-
tion can be used regardless of differences in client and serv-
er operating systems, compilers, and languages.

Also in the section “Questions for the CORBA ORB
Salesman,” it is stated that “..., and you run the risk of
future software failures given an operating system upgrade
on portions of the architecture [when using static invoca-
tion].” I fail to see how this can be true, given that the
CORBA architecture is specifically designed to be platform-
and language-independent. Clients do not have to know,
and indeed cannot know, implementation details of a serv-
er on the basis of the interface definition, and so will not be
affected by server-side implementation changes.

According to my textbooks and to the best of my
knowledge:

• Static invocation is used when you compile a client stub
from Interface Definition Language and use that to con-
tact the server skeleton. It is also known as early or com-
pile-time binding. In other words, the interface (but not
the implementation) is known beforehand.

• Dynamic invocation is used when the client does not
know the interface in advance but queries the ORB for
an interface (or method) definition. The client then
builds a request based on the obtained definition and
invokes it. This is known as late or run-time binding.
The difference between static invocation and dynamic

invocation is very analogous to the difference between
directly calling into vtable method pointers or using
IDispatch.Invoke (after having called IDispatch.
GetIdsOfNames and IDispatch.GetTypeInfo and so on ...)
in COM.

Either way, the client will always be insulated from the
server implementation details.

According to the glossary of the CORBA 2.5 specifica-
tion (September 2001):
• Static invocation: Constructing a request at compile

time. Calling an operation via a stub procedure.
• Dynamic invocation: Constructing and issuing a request

whose signature is possibly not known until run-time.
Best Regards,

The term “invocation” is overloaded to mean both the
determination of the interface representation and the actu-
al method call. The reader is using the first meaning of the
term while I was using the second, and specifically stated so.
The interface representation can be determined at compile
time (referred to in the CORBA specification as Static
Invocation Interface) or at run-time (referred to as
Dynamic Invocation Interface in the CORBA specifica-
tion). The method call on an object can be “invoked”
dynamically or statically. In this sense of the term, the
CORBA specification as well as other texts are not particu-
larly clear. The interpretation I was using is that a dynami-
cally invoked method call implies that the data will be mar-
shaled, and a statically invoked method call implies that the
data will not be marshaled. A danger of such ambiguity is
that it leaves certain points open to the interpretation of the
object request broker (ORB) provider, who may not imple-
ment the ORB consistently with the specification's inten-
tion.

The standpoint of my article dealt with safety-critical
embedded and command-and-control systems typical of
those found in Department of Defense combat systems
where a function must be deterministic. Dynamic invoca-
tion, in either sense of the term would never be considered
to be deterministic. Static invocation can be deterministic
subject to the actual construction of the operating system,
the compilers, and the ORB itself. However, the static invo-
cation can become non-deterministic should any of these
change. When I said, “Static invocation can be used if the

language, compiler and operating system (and hardware) are
known to be the same on both client and server,” I should
have said, “Static invocation can be used safely if …”

Speaking from experience, I can attest that the CORBA
architectural philosophy of platform and language inde-
pendence has not been faithfully extended to all ORB
implementations, for all platforms and all languages. If you
have an environment of mixed operating systems and lan-
guages, it is often difficult to find a single ORB vendor for
the whole environment. If you must use multiple vendors’
products, you will rarely have interoperability problems
with the standard data types such as integer, real, or string.
Try passing a scalar array or a covariance matrix and there
will often be interoperability problems. When I said, “You
run the risk of future software failure given an operating
system upgrade on portions of the architecture,” I was
pointing out that an ORB supplier might make design deci-
sions based on specific operating system functionality. If
the underlying functionality of the operating system
changes, the ORB’s behavior may also change. When an
ORB is ported to a different operating system or operating
system version, testing does not always uncover all the
behavior nuances, which may ultimately affect performance.

I feel strongly that any architect or designer should care-
fully consider the implications of any design decision on
the expected behavior of the system as a whole, as well as
the potential for unexpected changes in behavior given typ-
ical system evolution in compilers, operating systems, and
commercial off-the-shelf products.

Dear CrossTalk Editors:

Dear CrossTalk Editors:

— Tom J. Croak

— Jan Holst Jensen


